Posted on Hozzászólás most!

A fény meghatározása

A fény meghatározása

A fény nem más, mint fotonok által közvetített elektromágneses sugárzás. A növények a fényt elnyelik a pigmentjeiken és a fotoreceptoraikon keresztül. A növények a fényt a fotoszintézis láncreakciója során használják fel, melynek eredményeképp a fény energiája kémiai energiává alakul át. Ezenkívül a fény információt közvetít a növény számára a növény életteréről.

 

A színkép spektrumok definiálása

A színkép spektrumok definiálása összetett feladat. Léteznek ISO szabványok, de a növényi fotobiológia értelmezésében kicsit eltérünk ezektől a definícióktól. Például az ISO szabványban a vörös 610-760 nm-es tartományban tart, de a fotobiológiában a Sellaro (2010) által meghatározott 620-680 nm-es tartományt használjuk. Ráadásul a 650-670 és 720-740 nm-es tartományok kiemelkedően fontosak a számítások során, mint vörös/távoli vörös arány (Smith 1982).

 

PBAR

A PAR tartományon kívül, azaz 400 nm alatt (UV) és 700 nm feletti (FR) is kritikus jelentőségű információkhoz jut a növény. Ezek a sugárzások és egymáshoz viszonyított arányuk nagymértékben befolyásolják a növény növekedését. A nagyobb pontosság érdekében ezért a fotobiológiailag aktív sugárzás hullámhosszát 280 és 800 nm közé tesszük.

 

PAR

A PAR (Photosynthetically Active Radiation) a napsugárzás 400-700 nm-es tartományba eső része, amelyet a fotoszintetizáló organizmusok képesek felhasználni a fotoszintézis során. 400 és 700 nm között minden hullámhossz közreműködik a fotoszintézisben, emellett a különböző hullámhosszú fény információt közvetít a növény számára környezetéről.

 

R:FR

Vörös és a távoli vörös arány a fényspektrumban meghatározza az aktív és inaktív fitokrómok arányát. A vörös és távoli vörös arány az egyik legfontosabb információ a növény számára a környezetéről. Az árnyékban lévő növények hajlamosak hosszabb szárat és leveleket növeszteni a jobb fényviszonyok elérése érdekében, továbbá igyekeznek mielőbb magokat termelni (hajlamosak a korai virágzásra). Napfényben a vörös és a távoli vörös arány 1 az 1.2-höz, árnyékban ugyanez az arány 1 a 0.1-hez. Az alacsony vörös/távoli vörös arány magasabb aktív fitokróm számhoz vezet, amely a növény részéről nagyobb árnyék elkerülési választ generál. A vörös/távoli vörös arányt Smith (1982) meghatározása alapján (650-670 nm)/(720-740 nm) között írhatjuk le.

 

B:G  és CRY effektív energia sugárzás

A kék és zöld arány (B:G) meghatározza a kék fény reakciók hatékonyságát. Az árnyék elkerülésre (szár és levélnyurgulás) hatással van a kék és zöld arány.

  • Ha a B:G arány magas, a növény rövid ízközöket, sűrű levélzetet nevel.
  • Ha növekszik a zöld fény aránya a spektrumban, a fototropizmus gyengül, a növény nem lesz annyira sűrű, és a levél hőmérséklete enyhén nő a részleges sztómazáródás következtében.

A B:G fotonok arányát Sellaro (2010) meghatározása alapján (420-490 nm)/(500-570 nm) között írhatjuk le. A kriptokróm aktivitására (CRY2, kék fény receptor) szintén hatással van B:G arány, ha csökken a kék, és növekszik a zöld fény aránya, akkor a kriptokróm aktvitás értéke kisebb.

 

Pr:P

A Pr:P arányon a főként vörös fényt elnyelő (Pr) fitokrómok arányát értjük az összes (P) fitokrómhoz mérten, egy adott spektrumon mérve (úgy, mint fotostacioner állapot).  Vörös fény hatására a fiziológiailag inaktív, föként vörös fényt elnyelő (Pr) forma egy fiziológiailag aktív, távoli vörös fényt elnyelő (Pfr) formába alakul át. A Pfr is elnyel valamennyi vörös fényt, ezért vörös fény sugárzása esetén az egyensúlyi arány 85% Pfr és 15% Pr. A Pr fitokróm nagyon kevés távoli vörös fényt abszorbeál, ezért távoli vörös fényben 97% a Pr és 3% a Pfr a fitokrómok arányának egyensúlya.

 

Mesterséges fény emberi szemmel

Korrelált színhőmérséklet (CCT), színhőmérséklet (Kelvin)

Színhőmérsékletet használjuk a színek arányainak leírására a fényspektrumban. Általánosságban az érték csak fehér fénynél értelmezhető, amely a vöröses-narancssárgán keresztül a kékesfehér fényig terjed. Az alacsony színhőmérsékleti, azaz 2700-3000 K-ig terjedő tartományban meleg fehér, 4000 K közelében természetes fehér, az 5000 K felett hideg fehér fényről beszélünk.

 

CRI

A színvisszaadási index, amely egy mennyiségi érték, megmutatja egy adott fényforrás színvisszaadási képességét összehasonlítva a tökéletesnek vagy természetesnek tekintett fényforrással. A CRI index alkalmazható annak mérésére, hogy mennyire kényelmes a munkavégzés az ember számár adott megvilágítású környezetben. 50-es CRI érték alatti megvilágítás esetén a helyiségben kellemetlen hosszú ideig tartózkodni. A HPS fényforrások (nagynyomású nátriumgőz lámpák) 20-40 CRI értékkel rendelkeznek, típustól függően. A hagyományos vörös-kék LED fényforrások CRI értéke 0!

 

A növénytermesztéshez optimalizált mesterséges fényforrásokat keresse webáruházunkban!

 

Posted on Hozzászólás most!

A városi ember növényei

A városi ember növényei

 

Bálint Gazda a XXI. században is gondolatot ébreszt

 

Októberben a Forbes Flow rendezvényen jártunk az Akváriumban. Inspiráló előadók, érdeklődő közönség, remek szervezés, évről évre javuló színvonalú lebonyolítás.

A tempó pörgős, de mégsem rohanunk el a fontos információk mellett. És nem csak azért lassítunk most egy kicsit, mert Bálint György 99 éves – még mindig öröm hallgatni és tanulni Tőle -, hanem mert nagyon fontos, amire emlékeztet minket.

Az Ablak című televíziós magazin kertészeti rovata elsősorban a városi embernek szólt, aki kevés szabadidejét a hétvégi telken töltötte. Kiragadta a mindennapokból a növények gondozása, ritmust váltott a mindennapokhoz képest, zöldséget, gyümölcsöt, fűszert és virágot nevelt.

Mára kevés hétvégi telek, kiskert szolgálja ezt a célt. Az üdülőövezetek beépültek lakóházakkal, a nyaralók körül legfeljebb pázsit+tuja kombinációt tartunk karban zajos gépekkel.

Aki időről időre mégis kiszakadna a mókuskerékből, szívesen szemlélné, ahogyan a növények az éves ciklusuknak megfelelően fejlődnek, változnak, és élvezni szeretné a saját kezűleg nevelt ízeket, illatokat, annak a technológia lehetővé teszi, hogy otthonában kertészkedjen. Télikertben, háztetőn, beépített teraszon, vagy akár a konyha falán, mesterséges világítással, igény esetén a föld, mint közeg kiváltásával becsempészhetjük a zöldet az életünkbe. Éljünk vele!

Nézzen körül webáruházunkban, válogasson a lámpák, termesztő berendezések, tápoldatok között, és valósítsa meg a saját városi kertjét!

 

 

Posted on Hozzászólás most!

A növény növekedése

A növény növekedése

A növény megfelelő növekedése nem csak fotoszintézis kérdése. Fontos információkat hordoz a növény számára a PAR, és az azon kívül eső tartományok is. Fontos az UV-B és UV-A (280-400 nm), a távoli vörös fénytartomány 400 nm felett, valamint ezek kombinációja, pl. a kék és zöld fény aránya, és különösen a vörös és távoli vörös arány. Ezek a tartományok és arányok szolgáltatják a növény számára az információt a környezetéről. Például a vörös:távoli vörös arány változása alapján képes a szomszédos növények érzékelésére, erre a növény esetleg szárnyúlással reagálhat a lehető legtöbb fény elérése érdekében. Tehát pontosabb a fotobiológiailag aktív sugárzás felső határának meghatározása 800 nm-ben.

Vizsgálni kell az információt, amit a fény minősége nyújt a növénynek, és azt, hogy mihez kezd a növény a biztosított erőforrásokkal. Levelet hoz, virágot, gyökereket növeszt, vegyületeket termel, vagy mindezeket a kedvező összeállításban? Elősegíti a spektrum a kívánt eredményt? Mi a termesztő célja?

 

Mesterséges fény biztosítása

A legtöbb kertészeti LED eladó kész (polcról értékesített) vörös, kék, távoli vörös és fehér LED-eket használ. Azt állítják, hogy a vörös és kék kombináció megfelel a növény növekedéséhez, csak mert lefedi a klorofill elnyelési görbéjének két tartományát. Tévednek, amikor azt sugallják, hogy a többi pigment is ezt a sugárzást nyeli el. Bármilyen teszt vagy kutatás nélkül termesztő lámpaként árulják ezeket a berendezéseket, következésképpen a vevő magára marad azzal a kérdéssel, hogy a növényei miért nem nőnek, vagy virágoznak úgy, ahogy várta.

A fényminőség ellenőrzése, és annak ismerete, hogy a spektrumnak melyik része és melyik kombinációja vesz részt a különböző folyamatokban, lehetővé teszi a növény növekedésének szabályozását, és a kívánt cél elérését. Lehet ez a csírázás, virágzás beindítása, szár megnyúlása, stb. Egyes csúcsértékek nem befolyásolják a növényt megfelelően, és az elnyelési csúcsokon adagolt mikromól-löket energiapazarlás.

Kritikus még a fény egyenletes eloszlatása. Részletes megvilágítási szimulációs programok tájékoztatnak arról, hány darab lámpa szükséges egy adott területre, és hogyan kell elhelyezni őket, hogy biztosítsuk az egységes és optimális fényeloszlatást.

Kérje tanácsunkat, hogy a legalkalmasabb darabokat választhassa ki webshopunkból!

 

Posted on Hozzászólás most!

Jó növény, jó fény

Jó növény, jó fény

A növényeknek szükségük van fényre. Nem mindegy, milyen növényről és milyen fényről beszélünk.

A jó növény meghatározása nem a növényről szól, hanem a termesztőről és a piaci célkitűzéséről. A salátatermesztő számára a jó növény rövid idő alatt ér el nagy zöldtömeget, szép, ízletes, és hosszan eláll a polcon. A salátatermesztő nem akar virágzást, inkább késleltetni akarja azt, vagy teljesen kizárni. A növénynemesítést végző szakember számára a gyorsan virágzó és sok magot hozó saláta értékes lehet, az ő esetében a virágzás fénnyel előidézhető. A rózsatermesztő számára a jó növény gyorsan megnő eladható méretűre, nagy virága van és erős szára.

Vizsgálni kell tehát, hogy milyen információt közvetít a fény a növénynek, és azt, hogy mihez kezd a növény a biztosított erőforrásokkal: levelet hoz, virágot, gyökereket növeszt, vegyületeket termel, vagy mindezeket a kedvező összeállításban? Elősegíti a kiválasztott spektrum a kívánt eredményt? Mi a termesztő célja?

A LED technológiás fényforrások számos szempont szerint szabályozhatók. A sugárzott fényspektrum, az ideális lámpatest és a megfelelő vezérlés a mezőgazdasági célkitűzésekkel összhangban kiválaszthatók.

A fény teljesítménye nem csak az elektromos hatékonyság szempontjából mért érték lehet, számolni kell azzal az értékkel is, amit a termesztő számára nyújt. Termékeinkkel nem csupán a fotoszintézis intenzitás maximumát célozzuk meg, hanem optimalizálni szeretnénk az időt és költséget, amely mellett a lehető legnagyobb értéken eladható, vagy felhasználható növény előállítható.

 

Részletesebben a fény és a növény viszonyáról itt!

Növények számára optimalizált fényforrások megvásárolhatók itt!