Posted on Hozzászólás most!

A zöld fény jelentősége a növények számára

A zöld fény jelentősége a növények számára

 

A növénytermesztésben sokáig úgy tartották, hogy csak a piros és kék fénytartományok vesznek részt a fotoszintézisben, mert a klorofillok ezeket nyelik el. Az újabb kutatások rámutatnak, hogy a korábban mellőzött zöld fény is fontos szerepet játszik a növény növekedésében.

 

Közvetett szerep

A növény morfológiájában, környezeti hatásokra adott válaszaiban nagy jelentősége van a kék és zöld fény arányának (B:G). Ez az arány meghatározza a kék fény reakciók hatékonyságát. Az árnyék elkerülésre (szár és levélnyurgulás) hatással van a kék és zöld arány. Ha a B:G arány magas, a növény rövid ízközöket, sűrű levélzetet nevel. Ha növekszik a zöld fény aránya a spektrumban, a fototropizmus gyengül, a növény nem lesz annyira sűrű, és a levél hőmérséklete enyhén nő a részleges sztómazáródás következtében. A B:G fotonok arányát Sellaro (2010) meghatározása alapján (420-490 nm)/(500-570 nm) között írhatjuk le. A kriptokróm aktivitására (CRY2, kék fény receptor) szintén hatással van B:G arány, ha csökken a kék, és növekszik a zöld fény aránya, akkor a kriptokróm aktvitás értéke kisebb. A zöld fény képes továbbá visszafordítani néhány, kék fény által kiváltott választ.

 

Nagy hatékonyság

Ezenkívül kimutatható a zöld fényről, hogy nagy hatékonysággal továbbítva az energiát a fotoszintézis mélyebb levélrétegekben is képes végbe menni, fokozva ezzel a növekedést. Az 500-570 nm tartományban aktivizálódott receptorok képesek szinte veszteség nélkül továbbadni a begyűjtött energiát a klorofilloknak. Ez extra előnyt jelent a növény számára. Különösen, ha figyelembe vesszük, hogy így hasznosítható energia jut azokhoz a receptorokhoz is, amelyek a növény alsó részén, a felső levelek takarásában vannak.

 

A termesztő szemszögéből

Nem utolsó szempont, hogy míg a fotoszintetikus csúcsot jelentő vörös-kék fénymix a termesztőhelyiségben dolgozó ember szemét nagyon megviseli, a zöld fénnyel kiegészítve már közelítünk a teljes spektrumhoz. Ezzel kíméletesebb, ergonomikusabb környezetet teremtünk magunknak.

Ideiglenesen beüzemelhető zöld fényforrással a szükséges munkavégzéshez elegendő fényt biztosíthatunk magunknak anélkül, hogy megzavarnánk a növény fényciklusának sötét periódusát.

 

Keresse a dobozos és egyedi megoldásokat webáruházunkban!

 

forrás: maximumyield, valoya, fotó: unsplash

Posted on Hozzászólás most!

Figyelem! Fényhiány!

Figyelem! Fényhiány!

 

Elegendő fényhez jut-e a növényem?

 

Alapvető szükségletek

Növényeink fotoszintézis útján állítják elő az energiát a növekedéshez, virágzáshoz, terméséréshez. A fotoszintézishez fényre, levegőre, vízre és tápanyagra van szükségük.

Beltérben nevelt növények esetében nem könnyű biztosítani a fenti szükségletek helyes arányát, különösen, ha speciális igényű fajokról vagy fajtákról van szó.

Ha egy növény számára nem megfelelő a fény mennyisége és/vagy minősége, azt jelzi számunkra. Még a legdélibb fekvésű ablak elé helyezett virágcserép sem mindig jó megoldás, főként télen, amikor kevesebb a napfény.

 

Hogyan jelez a növény?

Ha a virágcserepet már áthelyeztük a lakás legnaposabb részére, de így is kevés a fény, vagy a láda/dézsa nem mozgatható könnyen, a következőket figyelhetjük meg:

  • lehulló levelek,
  • a korábbiaktól eltérő hajtások (például kisebb, kevésbé élénk színű levelek, megnyúlt szár),
  • az ablak/fényforrás irányába törekvő növény,
  • felkunkorodó levelek.

 

Az is előfordulhat, hogy a növény túl sok fényt kap, ilyenkor az alábbiakat tapasztalhatjuk:

  • a levelek színe megfakul,
  • a levelek kiszáradnak, lekonyulnak,
  • a növény hervadni látszik délben, amikor a legtöbb fényt kapja,
  • száraz, barna, perzselésszerű foltok jelennek meg a leveleken.

 

A természetes fényt kiegészítő mesterséges fény

Fényhiánnyal szembesülhetünk a megfelelően benapozott helyhez viszonyított túl magas egyedszám, vagy a növények számára nem tökéletes ablaktájolás esetén is. Ha mesterséges fénnyel pótoljuk, vagy helyettesítjük a napfényt, növelhetjük is az állományt, jobban kihasználhatjuk a rendelkezésre álló teret. Az ideális fényforrás kiválasztásával nő az esélye, hogy egészséges, boldog növényekkel vegyük körbe magunkat.

 

A fény színe

Ha úgy döntöttünk, hogy mesterséges fénnyel segítjük növényeinket, figyelnünk kell arra, hogy az a lehető legnagyobb mértékben imitálja a természetes napfényt, biztosítva közel az összes spektrumot. Ezen belül a két legfontosabb szín a kék és a piros. A kék fény a növény növekedését szabályozza, felel a bokrosodásért, a piros fény a virágzás és a vegetatív növekedés változásait stimulálja. Eme kettő kielégítő aránya elsődlegesen fontos!

A lakóházak világítása általában sok zöld és sárga fényt tartalmaz, ezeket a növények nem, vagy alig használják, a fotoszintézisben közvetlenül nincs jelentőségük, így a napfény helyettesítésére nem alkalmasak. Ez az oka annak, hogy a fényforrások piacán jól elkülöníthetők a növénynevelés céljából kifejlesztett típusok, melyek PAR, azaz fotoszintetikusan aktív tartományban sugározzák a fényt.

 

Találjuk meg az ideális fényforrást!

Ahhoz, hogy a különböző spektrumokban különböző intenzitással világító körték, fénycsövek és LED-ek közül a legjobbat válasszuk, ismernünk kell növényünk igényeit. Ennek ismeretében, és a tér adottságait figyelembe véve akár közösen is megtervezhetjük nappalija, télikertje, üvegháza berendezését fénnyel.

 

Nézzen körül webáruházunkban, és inspirálódjon!

 

forrás: maximumyield

Posted on Hozzászólás most!

A fény meghatározása

A fény meghatározása

A fény nem más, mint fotonok által közvetített elektromágneses sugárzás. A növények a fényt elnyelik a pigmentjeiken és a fotoreceptoraikon keresztül. A növények a fényt a fotoszintézis láncreakciója során használják fel, melynek eredményeképp a fény energiája kémiai energiává alakul át. Ezenkívül a fény információt közvetít a növény számára a növény életteréről.

 

A színkép spektrumok definiálása

A színkép spektrumok definiálása összetett feladat. Léteznek ISO szabványok, de a növényi fotobiológia értelmezésében kicsit eltérünk ezektől a definícióktól. Például az ISO szabványban a vörös 610-760 nm-es tartományban tart, de a fotobiológiában a Sellaro (2010) által meghatározott 620-680 nm-es tartományt használjuk. Ráadásul a 650-670 és 720-740 nm-es tartományok kiemelkedően fontosak a számítások során, mint vörös/távoli vörös arány (Smith 1982).

 

PBAR

A PAR tartományon kívül, azaz 400 nm alatt (UV) és 700 nm feletti (FR) is kritikus jelentőségű információkhoz jut a növény. Ezek a sugárzások és egymáshoz viszonyított arányuk nagymértékben befolyásolják a növény növekedését. A nagyobb pontosság érdekében ezért a fotobiológiailag aktív sugárzás hullámhosszát 280 és 800 nm közé tesszük.

 

PAR

A PAR (Photosynthetically Active Radiation) a napsugárzás 400-700 nm-es tartományba eső része, amelyet a fotoszintetizáló organizmusok képesek felhasználni a fotoszintézis során. 400 és 700 nm között minden hullámhossz közreműködik a fotoszintézisben, emellett a különböző hullámhosszú fény információt közvetít a növény számára környezetéről.

 

R:FR

Vörös és a távoli vörös arány a fényspektrumban meghatározza az aktív és inaktív fitokrómok arányát. A vörös és távoli vörös arány az egyik legfontosabb információ a növény számára a környezetéről. Az árnyékban lévő növények hajlamosak hosszabb szárat és leveleket növeszteni a jobb fényviszonyok elérése érdekében, továbbá igyekeznek mielőbb magokat termelni (hajlamosak a korai virágzásra). Napfényben a vörös és a távoli vörös arány 1 az 1.2-höz, árnyékban ugyanez az arány 1 a 0.1-hez. Az alacsony vörös/távoli vörös arány magasabb aktív fitokróm számhoz vezet, amely a növény részéről nagyobb árnyék elkerülési választ generál. A vörös/távoli vörös arányt Smith (1982) meghatározása alapján (650-670 nm)/(720-740 nm) között írhatjuk le.

 

B:G  és CRY effektív energia sugárzás

A kék és zöld arány (B:G) meghatározza a kék fény reakciók hatékonyságát. Az árnyék elkerülésre (szár és levélnyurgulás) hatással van a kék és zöld arány.

  • Ha a B:G arány magas, a növény rövid ízközöket, sűrű levélzetet nevel.
  • Ha növekszik a zöld fény aránya a spektrumban, a fototropizmus gyengül, a növény nem lesz annyira sűrű, és a levél hőmérséklete enyhén nő a részleges sztómazáródás következtében.

A B:G fotonok arányát Sellaro (2010) meghatározása alapján (420-490 nm)/(500-570 nm) között írhatjuk le. A kriptokróm aktivitására (CRY2, kék fény receptor) szintén hatással van B:G arány, ha csökken a kék, és növekszik a zöld fény aránya, akkor a kriptokróm aktvitás értéke kisebb.

 

Pr:P

A Pr:P arányon a főként vörös fényt elnyelő (Pr) fitokrómok arányát értjük az összes (P) fitokrómhoz mérten, egy adott spektrumon mérve (úgy, mint fotostacioner állapot).  Vörös fény hatására a fiziológiailag inaktív, föként vörös fényt elnyelő (Pr) forma egy fiziológiailag aktív, távoli vörös fényt elnyelő (Pfr) formába alakul át. A Pfr is elnyel valamennyi vörös fényt, ezért vörös fény sugárzása esetén az egyensúlyi arány 85% Pfr és 15% Pr. A Pr fitokróm nagyon kevés távoli vörös fényt abszorbeál, ezért távoli vörös fényben 97% a Pr és 3% a Pfr a fitokrómok arányának egyensúlya.

 

Mesterséges fény emberi szemmel

Korrelált színhőmérséklet (CCT), színhőmérséklet (Kelvin)

Színhőmérsékletet használjuk a színek arányainak leírására a fényspektrumban. Általánosságban az érték csak fehér fénynél értelmezhető, amely a vöröses-narancssárgán keresztül a kékesfehér fényig terjed. Az alacsony színhőmérsékleti, azaz 2700-3000 K-ig terjedő tartományban meleg fehér, 4000 K közelében természetes fehér, az 5000 K felett hideg fehér fényről beszélünk.

 

CRI

A színvisszaadási index, amely egy mennyiségi érték, megmutatja egy adott fényforrás színvisszaadási képességét összehasonlítva a tökéletesnek vagy természetesnek tekintett fényforrással. A CRI index alkalmazható annak mérésére, hogy mennyire kényelmes a munkavégzés az ember számár adott megvilágítású környezetben. 50-es CRI érték alatti megvilágítás esetén a helyiségben kellemetlen hosszú ideig tartózkodni. A HPS fényforrások (nagynyomású nátriumgőz lámpák) 20-40 CRI értékkel rendelkeznek, típustól függően. A hagyományos vörös-kék LED fényforrások CRI értéke 0!

 

A növénytermesztéshez optimalizált mesterséges fényforrásokat keresse webáruházunkban!

 

Posted on Hozzászólás most!

Jó növény, jó fény

Jó növény, jó fény

A növényeknek szükségük van fényre. Nem mindegy, milyen növényről és milyen fényről beszélünk.

A jó növény meghatározása nem a növényről szól, hanem a termesztőről és a piaci célkitűzéséről. A salátatermesztő számára a jó növény rövid idő alatt ér el nagy zöldtömeget, szép, ízletes, és hosszan eláll a polcon. A salátatermesztő nem akar virágzást, inkább késleltetni akarja azt, vagy teljesen kizárni. A növénynemesítést végző szakember számára a gyorsan virágzó és sok magot hozó saláta értékes lehet, az ő esetében a virágzás fénnyel előidézhető. A rózsatermesztő számára a jó növény gyorsan megnő eladható méretűre, nagy virága van és erős szára.

Vizsgálni kell tehát, hogy milyen információt közvetít a fény a növénynek, és azt, hogy mihez kezd a növény a biztosított erőforrásokkal: levelet hoz, virágot, gyökereket növeszt, vegyületeket termel, vagy mindezeket a kedvező összeállításban? Elősegíti a kiválasztott spektrum a kívánt eredményt? Mi a termesztő célja?

A LED technológiás fényforrások számos szempont szerint szabályozhatók. A sugárzott fényspektrum, az ideális lámpatest és a megfelelő vezérlés a mezőgazdasági célkitűzésekkel összhangban kiválaszthatók.

A fény teljesítménye nem csak az elektromos hatékonyság szempontjából mért érték lehet, számolni kell azzal az értékkel is, amit a termesztő számára nyújt. Termékeinkkel nem csupán a fotoszintézis intenzitás maximumát célozzuk meg, hanem optimalizálni szeretnénk az időt és költséget, amely mellett a lehető legnagyobb értéken eladható, vagy felhasználható növény előállítható.

 

Részletesebben a fény és a növény viszonyáról itt!

Növények számára optimalizált fényforrások megvásárolhatók itt!

Posted on Hozzászólás most!

A fény mérése a növény szempontjából

A fény mérése a növény szempontjából

 

Amikor egy lakótér vagy munkahely megvilágításához számoljuk ki, mennyi fényre van szükség, lumenben számolunk, területre vetítve luxban.

Növények esetében a DLI (daily light integral) szám mutatja, mennyi fény, azaz foton esik 24 óra alatt 1 m2-re. A mennyiség mértékegysége mól. Ehhez az értékhez emberi szem számára látható fényspektrumnak a fotoszintetikusan aktív tartományára (PAR=photosynthetically active radiation) szűkítve kell értelmezni a fényt.

Mesterséges növényvilágítás tervezésekor a fényforrásból sugárzott fotoszintetikusan aktív fotonok száma fontos paraméter. A PPF (photosynthetical photon flux) mértékegysége µmol/s, azaz mikromól másodpercenként. Területre, jelen esetben például levélfelületre vetítve PPFD-t (photosynthetical photon flux density) kell számolnunk, melynek mértékegysége µmol/m2/s.

A növényvilágítási rendszer alaposan átgondolt tervezésének célja, hogy a sugárzott fotonok száma és a megvilágított növényállomány fotoszintetikus tevékenysége során lebontott CO2 molekulák száma egymással arányos maradjon.

Ehhez figyelembe kell venni:

– a megvilágított növény DLI-szükségletét (általánosan számolhatunk 8-10 mól/m2 értékkel, de növényfajonként adódhatnak eltérések),

– a növények fotoszintetikus fényérzékelésének elnyelési csúcsait, melyben segítségünkre lehet az RQE-görbe (relative quantum efficiency), mely túlnyúlik a PAR tartományon,

– és az YPF (yield photon flux) értéket, mely a teljes RQE-görbén kibocsátott fotonokat méri hatékonyság/hasznosulás szerint, így módosítva a PPF értéket.

Fejlesztő csapatunk célja, hogy partnereink növényei a befektetett energiát maximálisan a piaci érték növelésére fordíthassák.